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Overview

= MBSE Brings New Level of Complex Models and Systems
= Distributing Systems to Optimize Computing Load

" |ntegrating Distributed Systems with Accurate Networks
= One Example Solution: Autonomie + ESSE

= Conclusion



Model Based System Engineering (MBSE) Brings New
Level of Complex Models and Systems

Different Flavors of MIBSE are currently used in the industry
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Complex Models in MBSE
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Complex Systems in MBSE

= Vehicle dynamics : CarSim

— Define the road
— Takes in torque from transmission
— Speed feedback for driver
= Engine:
— Simulink models for plant and control
— Fuel data generated from GT Power
=  Simulink models for the rest of the vehicle
= Systems integration with Autonomie:

CarSim vehicle
dynamics model

— GUI for model/system selection
— Automatic model building
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The Rise of Complex Models and Systems

= The combination of these tools and models, together with the increase in
computation capability delivered by powerful computers, have enabled
engineers to increase the fidelity of plant models and implement more
complex controls

= Side-effect:
=> increased size and complexity of control models.
= Increased simulation time and sub-optimal use of computing resources

= New need:

— Easily distribute systems and models to optimize the computing load, while
ensuring accurate connectivity between the models.



Distributing Systems to Optimize Computing
Load

Default system topology: component models are connected together via
hierarchical networks in a single signal environment. Simulation
performances are defined by the sequential evaluation of all the models.
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Distributing Systems to Optimize Computing
Load

1 - Divide the models within the system into sampling domains
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Distributing Systems to Optimize Computing
Load

2 - Group the models of same sampling domains into modules to run in
parallel, with their own solver properties (e.g.: fixed or variable fixed steps,
different step sizes...). They can also be split in separate modules to optimize
the computing load.
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Distributing Systems to Optimize Computing
Load

3 - Connect modules via buses (networks) with different sampling rates
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Linking Distributed Systems via Accurate
Networks

Linking system integration + accurate network modeling + fast distributed
simulation

BEST OF THREE WORLDS
IF the following constraints can be met

1. The network models connecting all the modules have the following
attributes:

— Accuracy in timing, function and structure
— High simulation performance

2. Modules need the ability to use either:
— Variable rate solvers, or
— Fixed rate solvers
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Linking Distributed Systems via Accurate
Networks

3. A model communication capability which enables:

— Parallel communication networks that transfer information between modules
at different sampling rate.

— Parallel execution of the network-connected modules at different sampling
rate, and, if possible, on separate cores.

4. This process will be highly effective when engineers have the flexibility to
easily:
— Define or modify the system topology as wanted, i.e.: how many modules to run in
parallel and which models to group together into modules

— Specify the different properties of the modules and networks (connections) used to
communicate between them (for instance, sampling rate, name...)

— Define and validate the properties of all connections between the individual models and
modules containing them

— All the interactions between the tools required for this process are handled
automatically in the background
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One Example Solution: Autonomie + ESSE

Autonomie:

- Easily define distributed systems topology

- Automated handling and verification of
model and module connections

- Easily define simulation properties

- Automated model building and simulation

- Designed to interact with other tools
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Build & run models automatically

= Automatic building saves time and avoid errors

= Automatic enforcement of interface rules & checks

=  Post processing capabilities y
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Results

Real World performances combining Simulink models, and achieved after
testing different topology distributions for 3 hrs:
Simulation time

Decomposition Original time New Time
Vehicle 1, Simulink Only | GM System Model 16 times real time | 1.07 times real time

Simulation types

One can argue a distributed continuous plant model will not compute
exactly the same response as its corresponding monolithic model

However, the objective of modeling and simulation of physical systems is
to produce an accurate system response to a prescribed set of inputs

When monolithic models support signal interconnections to have
physically appropriate latencies — rather than zero latencies as is typical in
continuous domain models, then it will behaves identically to the
monolithic model during simulation, except that the distributed one will
likely execute considerably faster.
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Conclusion

= System simulations have become a lot more complex and now often
require the combinations of heterogeneous and multi-domain models.

= Reorganizing the system topology into distributed systems enables a
nearer optimum selection of independent solver options and a better
spread of the computing loads.

= This requires a way to accurately network all the model connections.

= We demonstrated how we successfully designed such a framework by
combining the system integration features of Autonomie with the
distributed simulation engine and network features of the ESSE Systems
Engineering Workbench.
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