PHEV Vehicle Level Control Strategy

Summary

November 2008

Aymeric Rousseau
Argonne National Laboratory

Sponsored by Lee Slezak

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Objective: Assess Fuel Displacement Potential of Various PHEVs Control Strategies

Higher Electric Energy → Higher Control Freedom → Fuel Savings Potential

- Depending on various driven distance, several possible modes:
 - Below AER (All-Electric Range): Electric-only (EV)
 - Above AER: EV? CS(Charge Sustaining)? Blended?

Common Strategy = EV+CS

Control Optimization/Design Investigates Strategies Potential
Innovative 3-way Approach to Control Optimization

Global Optimization

Backward model (not PSAT)

Control Design

Rule-Based Control Design

Heuristic Optimization

Optimal Control, Minimal Fuel Cons.

Various PSAT Control Strategies

Optimally tuned Parameters

Backward model (not PSAT)
Global Optimization Showed Minimal Fuel Consumption Achieved in Blended Mode

3 cycles demonstrated Blended strategy is optimal

Example of EV+CS Mode for comparison
Control Strategy Design Showed Significant Improvements

Up to 9% less fuel consumed when driving distance is 20 mi

Power Split 10 miles AER (Prius), run on several UDDS cycles
Different Optimization Methods Showed Control Depends on Distance

Global Optimization

Heuristic Optimization (UDDS)

Small SUV, Parallel Pre-tx, 10 miles AER
“Engine On” Is Linked to Wheel Power

- Power at wheels above which ICE is on 95% of the time, similar to wheel power threshold used in rule-based controls
- Higher Electric Energy Use → ICE starts “later”
- Wheel Power Threshold follows linear trend
- Little influence of driving cycle
Engine Power Depends on Cycle and Electricity Use

- UDDS: ICE power increases with Wh/km
- LA92: ICE power constant, because cycle is aggressive enough for the ICE to operate efficiently
Charging from ICE Likely When ICE is Predominant and Wheel Power is Low

- **UDDS**: when ICE is used often, it has to operate often above requested wheel power
- **LA92**: ICE operates efficiently, even in CS mode because average ICE power is high
5 Vehicles with Different Energy and AER

Power to meet EV-mode requirements on UDDS…

Different UDDS All-Electric Range

10 miles AER on UDDS
For a Given Electric Consumption, AER Has Little Influence on Control

- For a given electric consumption, ICE-On behavior does not depend on the energy sizing...

...but possible electric energy consumption is limited: same electric consumption corresponds to different ΔSOC
Minimal Fuel Consumption

- Distance Traveled < AER
 - On a given cycle, little sensitivity to energy sizing
 - LA92 leads to a 34% increase in electric Wh/km compared to UDDS

- Distance Traveled > AER
 - Decrease in fuel consumption is proportional to increase in AER
 - 1.5 L/100 km difference between UDDS and LA92
Fuel Consumption Follows a Linear Trend and Depends on Wh/km

- Small AER vehicles consume slightly less fuel due to lower weight, but difference in consumption is minimal
- For a given electric consumption, fuel consumption is comparable
- For 2 vehicles (e.g. AER 30 & AER 40) travelling less than their AER (e.g. 20 mi on UDDS), same EV mode electric consumption
5 Vehicles With Different Power

Same Battery Energy… + … Different Electric Power

Power Scaling Ratio

Battery Power (kW)

0 10 20 30 40 50 60 70 80 90 100 110

0.6 0.8 1.0 1.2 1.4

10 miles AER on UDDS
Maximum Power Impacts Wheel Power Threshold for Engine ON

- The engine starts “earlier” when the electric system has lower power.
Less Electric Power Results in Higher Fuel Consumption

- Especially true on aggressive cycle (LA92), and distance traveled close to AER
- Higher electric power does not significantly reduce fuel consumption
- UDDS seems to be a good choice for power requirements (In terms of energy use)
Control Strategy Assessment Provided Insights on PHEVs Optimal Operations

- When the trip distance is greater than the All Electric Range, using the engine throughout the trip (blended control) is preferable to depleting the battery as fast as possible.
- Optimum control depends on the distance.
- Engine On/Off is linked to wheel power demand and available electrical energy.
- When used, engine should be operated at high efficiency.