Can Using a Charge Depleting Strategy Further Decrease a PHEV’s Fuel Consumption When Trip Distance Exceeds All Electric Range?

V.S.
A Charge Depleting Strategy Can Use A Priori Knowledge of Trip Distance to Choose when to Use the Engine
This Is a Specific Case, How Much Can It Be Generalized?

- 1 Configuration – Power Split
- PHEV with 10 mile Range on the UDDS
- Trip Distances - 10, 20, 30, 40, 60 miles on the UDDS
- 3 Control Strategies
- 1 Control Parameter was adjusted (Engine On Power Threshold)
- Did Not Include
 - Temperature Effects – Cold or Hot Battery
 - Emissions
PSAT Modeling Assumptions

Class	Midsize
Curb Weight | 1432 kg
Battery Type | Li-Ion JCS - Saft 19 Ah
0 to 60 mph | 9 sec
Grade | 6% at 65 mph
Range | 10 miles on UDDS
Delta SOC | 90% to 30% SOC
Charge Sustaining at | 30%

Power Split Configuration

10 Miles: Less Than 2 Full UDDS cycles

Vehicle Speed (m/s)

Time (sec)
Each of the Three Control Strategies Partitions the Demanded Road Load between the Engine and Battery Differently

1. Differential Engine Power
 - Engine power < Road Load

2. Full Engine Power
 - Engine power = Road Load

3. Optimal Engine Power
 - Engine power > Road Load
Decreasing the Control Parameter (Engine On Power Threshold) Increases the Trip Distance

- Decrease Engine Start Threshold
- Engine Turns On More Frequently

- Target Distance: 96 km

- Engine On/Off Thresholds

- Increasing Trip Distance

- Power (Watt) vs. Efficiency

- SOC vs. Time (sec)
Driving 32 km with a PHEV 10 in Blended Mode Would Save 9% More Fuel Than in EV Mode!

10 miles AER vehicle run on several UDDS cycles
Four Factors Affecting Consumption

- Increased Engine Efficiency
- Increased Excess Battery Charging
- Increased Transmission Efficiency
- Increased Regenerative Braking

Engine Peak Efficiency
= 35%

- **Converging to Charge Sustaining Behavior**

Effect on Consumption PHEV32

<table>
<thead>
<tr>
<th></th>
<th>ICE Eff</th>
<th>X-chg</th>
<th>Trans Eff</th>
<th>Regen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Even Though the Optimal Engine Strategy Has the Highest Average Efficiency, Its Greater Excess Charging Reduces This Advantage

![Graph showing the effect of trip distance on fraction of total engine power.

Effect on Consumption PHEV32

<table>
<thead>
<tr>
<th></th>
<th>ICE Eff</th>
<th>X-chg</th>
<th>Trans Eff</th>
<th>Rege n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As Trip Distance Increases, the Transmission Efficiency for the Optimal Engine Strategy Drops below the CS Strategy Transmission Efficiency
As Trip Distance Increases Regenerative Braking over the Cycle Decreases

Effect on Consumption PHEV32

<table>
<thead>
<tr>
<th></th>
<th>ICE Eff</th>
<th>X-chg</th>
<th>Trans Eff</th>
<th>Rege n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Full</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Opt</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
Regenerative Braking Decreases Because the Battery Discharges Slower
Conclusion

- A Charge Depleting strategy can improve a PHEV’s fuel economy by up to 9% for a power split configuration.
- Most of the gain is from operating the engine more efficiently.
- The full engine strategy showed the most benefit as a charge depleting strategy.
- Engine benefits are cancelled by excess charging, decreased transmission efficiency and decreased regenerative braking.
- The Optimal engine strategy suffered the most from excess charging.
- The Differential engine strategy suffered from low engine efficiency.